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The perturbation calculation of van der Waals potentials 
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Summary. The unsymmetrized perturbation theory for interaction potentials is 
reformulated in such a way that the overlap and exchange effects can be taken into 
account in a satisfactory and conceptually simple way. This formulation, known as 
the generalized Heitler-London theory, itg~ shown to be valid regardless of the 
ultimate limit to which the polarization approximation converges. Within the 
framework of this theory, the van der Waals potential of the triplet Hz(3Su) state is 
calculated and shown to be in excellent agreement with the exact ab initio results. 
Both the exchange energy and the polarization energy are obtained from a per- 
turbation calculation. 
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1 Introduction 

Quantum-chemical calculations of van der Waals interaction potential were suc- 
cinctly reviewed by Kutzelnigg [1] in an important 1977 paper. In view of the fact 
that "standard quantum chemical computational methods even of CI type usually 
fail for van der Waals interactions", he concluded "that straightforward Rayleigh- 
Schr6dinger perturbation theory is still the method of choice if one is interested in 
the asymptotic behaviour of the interaction for R ~ oe". However, he continued to 
state that "one of the big practical problems is to take overlap and exchange effects 
on intermolecular forces into account in a satisfactory and conceptually simple 
way". 

The problem arises from the fact that in order to describe the entire potential 
energy curve in the van der Waals region, a knowledge of both the long range 
attractive and short range repulsive potentials as well as the effect of the charge 
overlap are required. It is well known that the long-range attractive potentials 
can be described by the dispersion series obtained from the second order 
Rayleigh-Schr6dinger (RS) perturbation theory. The short-range repulsive poten- 
tial comes mainly from the exchange forces. Up until recently, it was generally 
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believed that the exchange potential cannot be obtained from the ordinary (unsym- 
metrized) RS perturbation theory. Therefore a large amount of effort has been 
devoted to the development of the so-called symmetry adapted perturbation 
expansions [2, 3]. Unfortunately these expansions are very complicated and give no 
unique results. 

Essentially one can view the symmetry adapted perturbation theories as at- 
tempts to extend the Heitler-London treatment to higher orders. Since "a per- 
turbation scheme based on the Heitler-London result is undesirable in the sense 
that it does not produce in leading order the proper asymptotic behaviour of [the 
exchange energy] . . . .  and no treatment has demonstrated that the correct ex- 
ponential terms can be obtained this way" [4], serious doubts on the validity of the 
symmetry adapted perturbation theories for large R have been expressed [5]. 
Previously it was felt that the correct form of the exponential terms can only be 
obtained from the asymptotic exchange perturbation theory [6]. This theory was 
derived rather early in connection with some problems with exchange interactions 
involved in describing magnetism in solids. It is based on the simple physical 
concept of relating the exchange energy to the flux of the electrons flowing back 
and forth between the atoms in the molecule. Previously this theory which involves 
calculating a surface integral was considered to be "very different in nature from 
the RS perturbation theory involving special analytical techniques which do not 
appear capable of systematic improvement" [5]. 

Recently we have shown that the unsymmetrized perturbation theory can be 
used with the surface integral to give the exchange energy [7, 8]. Furthermore the 
energy can be systematically improved. In the framework of the generalized 
Heitler-London theory [9,10], this exchange energy is modified by the overlap 
integral and combined with the polarization energy to give the eigenenergies of the 
system. In this paper we will use the Hz(a•u) potential to illustrate that the van der 
Waals potential can be constructed from the asymptotic expansions of these energy 
components. It will be seen that the overlap and exchange effects can indeed be 
taken into account in a satisfactory and conceptually simple way. 

In the next section, we will first re-examine the generalized Heitler-London 
(HL) theory in the light of yet another one of Kutzelnigg's recent papers [11]. In the 
new theory the polarization energy and the exchange energy are clearly separated. 
We will show that this theory is valid regardless of the limit to which the 
polarization approximation will ultimately converge. In Sect. 3, the asymptotic 
expressions of the exchange energy and the polarization energy are presented. We 
will show that although the 1/R expansion of the polarization energy is a divergent 
asymptotic series, it can nevertheless be summed and extended to small distances 
with a damping function which depends only on the exchange energy. Finally in 
Sect. 4, these expressions together with the overlap integral are combined accord- 
ing to the generalized HL theory. The result is a remarkably accurate potential in 
the van der Waals region. All quantities in this paper are in atomic units. 

2 The generalized Heitler-London theory 

2.1 Rayleigh-SchrSdinger perturbation theory 

The Rayleigh-Schr6dinger perturbation theory [12] is briefly reviewed here to 
establish the notation. When electron exchange is neglected in the calculation, this 
perturbation theory is known as the polarization approximation [13]. 
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In the Born-Oppenheimer approximation, the Hamiltonian of the H2 molecule, 
written in the atomic units is 

with 
H = Ho + V, (1) 

1 1 
H o =  - 1 V ~ - ½ V 2  2 , (2) 

F1A F2B 

1 1 1 1 
V -  + - -  + ~ .  (3) 

r l B  r2A  " r12 

The wavefunction Zp and the energy Ev of the SchrSdinger equation with a zeroth- 
order Hamiltonian Ho and a perturbing potential V: 

(He + 2 V)•. = EvZ p (4) 

are both expanded in an infinite series in powers of 2: 

zp = X (5) 
n=0 

Ep= Z 2"s.. (6) 
n=O 

The different orders of the wavefunction satisfy the following set of equations: 

with the condition: 

n = 0: (Ho-- ~o)¢o = 0, (7) 

n = 1" (Ho - eo)¢1 + ( V -  e0¢o = 0, (8) 

n~>2: ( H o - e o ) ¢ .  + ( V - ~ 1 ) ¢ . - 1  = ~ s~¢.-i, (9) 
i=2  

(¢o, q9.> = 5.,o. (10) 

Since He is the Hamiltonian of the two isolated hydrogen atoms, the zeroth-ordcr 
wavefunction is simply the product of the ls orbitals of the two unperturbed 
hydrogen atoms: 

qgo -- 1Sa(1) 1SB(2), (11) 

a n d  the zeroth-order energy is 
eo = - 1. (12) 

The higher orders of energy are then given by 

~n+l  = ((#n,  V ~ ) o ) "  (13) 

The question of convergence immediately arises. It is known that for small 2, 
Eq. (6) is convergent, the question is whether it converges for 2 = i. In a recent 
paper "Does the polarization approximation converge for large R to primitive or 
a symmetry-adapted wavcfunction?" Kutzelnigg [11] showed that, with certain 
assumptions, it also converges at 2 = I, although it converges extremely slowly. 
In this paper, wc will denote the Nth-ordcr approximation of the polarization 
energy by: 

N 

N (14) 
n = l  
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2.2 The Eigenenergies of the system 

Since the total Hamiltonian H is symmetric with respect to the interchange of 
electrons 1 and 2, the eigenfunctions must be either symmetric or anti-symmetric. 
The symmetric wavefunction is associated with the singlet state and the anti- 
symmetric wavefunction with the triplet state. That is 

H ~Ps = Es ~Ps, 

H q~t = Et  ~ot, 

and 

(15) 

(16) 

Pq~ = q~, (17) 

P qh = - q~t, (18) 

where P is the operator which interchanges the coordinates of electrons 1 and 2. 
At large R, the two states are nearly degenerate. Half of the difference of the two 

energies is known as the exchange energy e~: 

e~ = ½ ( E t -  Es). (19) 

To see the relationship between various energy components, it is useful to define 
the Coulomb energy ~ as 

~c = ½(E, + E~). (20) 

Thus, it is clear that 
E o = e~ - e~, (21) 

Et = ec + e~. (22) 

2.3 The equation that governs the polarization wavefunction 

In the above-mentioned recent paper [11] Kutzelnigg concluded that the polariza- 
tion approximation will converge, in infinite order, to the symmetrical ground state 
wavefunction. However, he goes on to state that "the wavefunction of the polariza- 
t ion  approximation is genuinely primitive (localized) to any finite order". This is 
the dilemma of the conventional perturbation theory. In principle it converges to 
the ground state and yet one can never achieve it in any actual calculation. Earlier 
we have shown that if the polarization expansion is assumed to converge to the 
primitive wavefunction: 

1 
• . = ~ ( ~ 0 ~  + ~0,), (23) 

one can obtain not only the polarization energy in excellent agreement with all 
practical calculations [-9, 10], but one can also obtain the exchange energy through 
the surface integral [-7, 8]. Recently Cwiok et al. [14] carried the perturbation 
calculation for H2 to 150th order. While their result still did not converge to the 
ground state, they used an elaborate extrapolation method to show that it will 
eventually converge to the ground state in infinite order. It seems that at present 
the conventional polarization approximation is not a convenient way to calculate 
the potential energy. On the other hand, when the polarization series is substituted 
into the equations of the generalized HL theory, it leads to a series which converges 
very rapidly [9, 10]. 



The perturbation calculation of van der Waals potentials 173 

Next, we will show by a nearly trivial calculation that this theory is always 
valid. All we have to do is to demonstrate that the formulas derived are in fact 
independent of the convergence limit of the polarization approximation. We start 
with an Ansatz for the wavefunction of the polarization approximation which 
covers all possible eventualities of convergence discussed above. 

1 
Zp = (1 + k2(R)) 1/2 (q~s + k(R)~o,). (24) 

If Zp converges to q~, for all R, then k(R) = 0. If at large R, it converges to the 
localized wavefunction of Eq. (23), then k( ~ ) = 1. We then develop a set of energy 
expressions which are independent of k. 

It is easy to show that Eq. (24) satisfies the following equation, which is the basis 
of the generalized Heitler-London theory: 

(Ho + v )  z~ = (~c - ~ P) z~. (25) 

The left side of this equation is 

1 
(Ho + V)Zv = (Ho + V)(1 + k2) 1/2 ((Ps + kq)t) 

1 
- (1 + k2) 1/2 (Es ~os + kEt q~t). (26) 

The right side of Eq. (25) can be expressed as 

1 
(ec -- exP)Zp = (1 + kz) 1/2 [(ec - exP) ~o, + k(ec -- exP) ~Pt]. (27) 

Using Eqs. (17), (18), (21), and (22) we have 

1 
(e~ -- exP) gp = (1 + k2) 1/~ (E, ~o, + kE, q~,)" (28) 

Since Eq. (28) is identical with Eq. (26), Eq. (25) is clearly established to be 
independent of the value of k. 

2.4 Energies according to the generalized Heit ler-London theory 

To get a solution to all orders we first substitute Eq. (5) into Eq. (25) with 2 = 1. 

(Ho + V ) I ~  4 , , ) =  (ec- exP)l ~ 4n)" (29) 
n = O  n = 0  

Forming the inner product with (4o [, we obtain 

~o + Z ( 4 0 ,  v 4 , )  = ~c - ~x Y, ( 4 0 ,  e 4 . ) .  (30) 
n ~ 0  n = O  

Using Eqs. (6) and (13), this equation can be written as 

Ep = ~c - ~x Y~ ( 4 0 ,  e 4 . ) .  (31) 
n = 0  

Let us define various orders of overlap integrals as 

Sn = (4o, P4n>, (32) 
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then Eq. (31) becomes 
ec = Ep+ e~ ~ S~. (33) 

n=0 

Substituting Eq. (33) into Eqs. (21) and (22), we obtain the desired generalized 
Heitler-London expressions for the energies of the singlet 1Sg and the triplet 3S u 
states of H2 for all distances: 

E ~ = E p - ( 1 - -  n=o ~S" / sx ' /  (34) 

E'=Ev+(I + ~ Sn) (35) 

• In a previous publication we expanded these expressions up to fourth order and 
expressed them in terms of the usual Coulomb and exchange integrals [10]. The 
first-order term is simply the usual Heitler-London formula. The second-order 
term is identical to that of the symmetry-adapted Murrel-Shaw [15] and 
Musher-Amos [16] theory obtained by Chatasinski and Jeziorski [17]. The entire 
series was recently shown [18] to be equivalent to the symmetrized 
Rayleigh-Schr6dinger expansion of Jeziorski et al. 1-19]. However, here we wish to 
emphasize that with ex in Eqs. (34) and (35) calculated by the surface integral 
method, the n already in first order the results are different from those of the above 
mentioned symmetry adapted theories as has been demonstrated [20, 8] for both 
H~ and H2. 

If e~ can be calculated from the polarization approximation, as is discussed in 
the next section, we will achieve our objective of calculating both E~ and Et with the 
unsymmetrized RS perturbation theory. The paramount question is how fast will 
the series converge to the respective energies? We have demonstrated previously 
that with only two orders, the ground-state energies of H + and H2 already 
converge to within a few percent in the entire region of the chemical bond [9, 20]. 
Here we will show that this is equally true for the H2 triplet state van der Waals 
potential. Moreover, near the van der Waals minimum and at smaller distances, the 
asymptotic expressions can still be used to accurately describe these potentials. 

3 Asymptotic theory of the interaction potential 

3.1 Asymptotic exchange energy 

Following the pioneering work of Gor'kov and Pitaevski [21] and Herring and 
Flicker 1-22] the exchange energy can be written as 

-- ~ (P ~a) [76 ~-)a " n dS s 

~x = jz . , (36) 

1 - 2J far ~2 d6r 

where ~a is the localized wavefunction of Eq. (23), n is a vector normal to the 
hyperplane, and 176 is the gradient operator in the six dimensional space of the two 
electrons. The five dimensional surface integral is over the hyperplane S which 
consists of all planes perpendicular to the internuclear axis in ordinary three 
dimensional space. The six-dimensional volume integral in the denominator is over 
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the far side of S where the localized wavefunction is exponentially decaying. At 
large internuclear distances the denominator goes to unity, however at small 
distances the volume integral increases and the denominator has an increasing 
effect. 

With the exchange energy defined in Eq. (19), this expression is exact. Recently 
we have shown [8] that even with the simplest zeroth order approximation for 
4~, (~, = ~bo), the exchange energy obtained from this formula for H2 closely 
follows the exact value over the entire range of internuclear distances down to 
R = 0.5 a.u. In this respect it performs just as well as conventional symmetrized 
Heitler-London theory. As already pointed out by Herring and Flicker the big 
advantage of the new calculation is that it does not exhibit the incorrect behavior at 
R ~ 50 a.u. which already in 1961 Bingel and coworkers realized to be a problem 
with conventional Heitler-London theory [23]. For large R, it can be shown [24] 
that the asymptotic exchange energy calculated from Eq. (36) using the higher- 
order polarization approximation for calculating ~a leads to the previously re- 
ported result of Herring and Flicker [22, 25]: 

ex -= 0.818 RS/Z e -2R. (37) 
R---~ oo 

Previously Kolos and Wolniewicz established that this result is in excellent agree- 
ment with "exact" ab initio calculations down to about R = 7 a.u. [26]. Our use of 
the polarization approximation via Eq. (36) demonstrates that by using perturbed 
wavefunctions the effect of the dispersion forces can be included in a systematic 
way. In this approach the exchange energy is associated with the physical exchange 
of electrons between the two nuclei. This concept, although still not generally 
accepted in the chemistry community [27], is demonstrated to be correct by the 
excellent results obtained [8]. 

3.2 Asymptotic polarization energy 

In the asymptotic region, it is well known that the interaction potential is correctly 
described by the long range dispersion series [28]. This series can be obtained from 
the RS perturbation theory by expanding the perturbation energy in powers of 
R-1. The advantage of this approach is that each individual term can be given 
a direct physical interpretation as the induced multipole interaction. As is well 
known the series is actually divergent [29] since it is based on the assumption that 
the overlap of the atomic wavefunctions is negligible. It is possible however to 
correct for charge overlap, by writing the dispersion series as [30]: 

~ ( R )  = - Y f~.(R)C~.R -~", (38) 
2 n = 6  

where the C2, are the asymptotic dispersion coefficients and thef2,(R) are damp- 
ing functions which are less than one in the region of small internuclear distances. 
The dispersion coefficients are known for many systems and for Hz essentially 
exact values are available [30, 31]: C6 = 6.499, C8 = 124.4, Clo = 3.286 × 103, 
C12 = 1.215 x lO s, C~4 = 6.061" 106. In recent years, considerable effort has gone 
into the ab initio calculation of the damping functions [30]. With the availability of 
accurate calculations, it has been possible to develop analytical expressions for the 
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damping functions. One especially simple and successful expression is given by 
[323: 

fzdR) = 1 - exp( - bR) 7.~ (bR)k (39) 
k=O k !  ' 

where b is the range parameter of the repulsive part of the potential. Eq. (39) was 
derived on the assumption that the short range repulsive potential is described by 
the Born-Mayer form A exp( - bR). Referring to Eq. (35) we see that in the context 
of the generalized Heitler-London theory, that the repulsive part of the triplet state 
potential can be attributed almost entirely to the exchange energy ex since the 
overlap integral So is very small in the van der Waals region (see Table 2). As seen 
from Eq. (37), ex is in fact not purely exponential. For such a case, under these 
circumstances we have recently proposed that the parameter b should be given 
by [33]: 

d 
b (R) = dR In (ex). (40) 

and will thus be a function of R. 
In the case of triplet H2, with ex given by Eq. (37): 

b = 2 - ~  ~ . (41) 

The minimum position of the Hz(a~u) state potential is at Rm = 7.8 a.u., for which 
according to Eq. (41), b(Rm)= 1.68. It is gratifying to see that this is in good 
agreement with the value of b = 1.66 used and obtained previously from 
a Born-Mayer fit of SCF calculations [32]. This shows that our previous choice 
was consistent with the generalized Heitler-London equation at least in the region 
of the van der Waals minimum. When the damping functions calculated with Eqs. 
(39) and (41) are compared with the nearly "exact" values of the damping functions 
of the H2 system [30], the agreement is very similar to that previously reported in 
Ref. [32]. Near the van der Waals minimum (R ~ 8.0 a.u.), the present results and 
our previous results [32] with a constant b agree very well with the exact values as 
expected. For R > 8.0 a.u., the present results are much better especially for terms 
of higher n and are almost identical with the exact values. For R < 7 a.u. the 
present damping functions deviate from the exact values. This is not unexpected as 
the asymptotic exchange energy of Eq. (37) becomes less accurate at smaller R. 

In order to implement Eq. (35) we also need the first order polarization energy 
el, which for H2 is given by [34]: 

(1 3 6) e l =  + ~ - ~ R - -  R 2 exp(--2R). (42) 

Like the exchange energy, el is exponentially decreasing at large R. However, it is 
not yet completely negligible at the minimum of the triplet state potential. It 
contributes almost 10% at the well depth (see Table 2). 

The overlap integrals are also decreasing exponentially as R increases. In the 
van der Waals minimum region, only the zeroth order overlap [34]: 

So = (1 + R + ½R2) 2 exp( -- 2R) (43) 

has a small effect (see Table 2). 
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4 Results and discussion 

With ex, el, e2 and So given by Eqs. (37), (42), (38), and (43) respectively, we calculate 
the singlet state energy Es and the triplet state energy Et according to Eqs. (34) and 
(35). The results are listed in Table 1. They are compared with the "exact" ab initio 
results of Kolos and Wolniewicz [26]. For Es, the agreement is very good down to 
R = 8.0 a.u. but the predictions are too small by about 20% at R = 6.0 a.u. For 
Et the agreement is excellent over the entire range down to R = 3.0 a.u. 

The individual components of the energy are tabulated in Table 2. The asym- 
ptotic exchange energy of Eq. (37), as noted before [26], is too small by about 5% 
at R = 8 a.u. and with a much smaller error at larger distances. The absolute value 
of the damped dispersion series of Eq. (38) is too small by about 4% at 8. a.u. as 
compared with the second-order polarization energy calculated by Koide et al. 
[30]. Most of the discrepancy comes from the neglect of induction and spherical 
dispersion which together still contribute about 3 % of the second-order energy at 
R = 8. a.u. As seen from Eqs. (34) and (35), the errors in the exchange energy and 
the polarization energy will add up in the singlet state energy Es, but will cancel 
each other in the triplet state energy Et. This explains why in Table 1 the errors in 
Et are much smaller than in Es. 

The 3N, potential of the H2 molecule is an important prototype of the van der 
Waals potentials [35]. The potential energy, defined as V = Et - Co, is thus given 
in second order by 

2 V = ep + (1 + So)ex. (44) 

Here we have neglected the high-order overlap integrals, since they are very small. 
For example, at R = 8 a.u., $1 = 0.10 x 10 -4. which is one order of magnitude 
smaller than So [36]. V(R) is shown in Fig. 1 together with the "exact" ab initio 
values. They are practically indistinguishable. The numerical values of V and the 
percentage of error as compared with the "exact" ab initio calculations are also 
listed in Table 2. Except near the zero crossing, where small differences are 
exaggerated, the agreement is within 1 percent in the entire well region. 

Previously we have proposed a similar model where the repulsive part is given 
by a SCF calculation [32]. It was found that the SCF results have to be multiplied 
by a factor of 1.14 in order to obtain an accurate potential. This 14% correction 
was attributed to the neglect of the dispersion exchange term, which had to be 
estimated semi-empirically. In the present theory this term is included in ~x via 
Eq. (36) by using the polarization perturbed wavefunction. In the present theory, 
there is no adjustable parameter. 

We feel the generalized HL theory is appealing in that it shows how the energies 
of the dispersion forces and of the exchange forces are quantitatively combined to 
give the total energy. It is well known that the dispersion forces are due to the 
induced multipole interactions [28] and are mediated by photons [37-]. With the 
aid of Eq. (36) we have recently demonstrated that the exchange forces leading 
to chemical bonding are mediated by electrons which are constantly trading places 
[8]. Thus this theory not only gives us a practical way of calculating van der Waals 
potentials, but it also makes the underlying physics more transparent. It seems to 
us that the validity of the present theory is unequivocally demonstrated by the 
excellent results of the present study. Thus the 1977 challenge posed by Kutzelnigg 
[1] "how to take overlap and exchange effects into account in a satisfactory and 
conceptually simple way" has now been finally successfully met! 
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Table 1, Singlet (X~Xg) energy E~ and triplet (b3~u) energy Et of the Hz molecule 

E,(a.u.) E,(a.u.) 
R(a.u) Present" "Exact ''b Present ° "Exact ''b 

1.0 -0 .933255  -1 .124538  -0 .711847  -0 .621523  
1.2 -1 .011908  -1 .164934  -0 .777792  -0 .718964  
1.4 -1 .052232  -1 .174474  -0 .821516  -0 .784150  
1.6 -1 .070843  -1 .168580  -0 .854899  -0 .831724  
1.8 -1 .076608  - l . 1 5 5 0 6 7  -0 .882294  -0 .868291 
2.0 -1 .074792  -1 .138131 -0 .905288  -0 .897064  
2.2 -1 .068739  -1 .120123  -0 .924546  -0 .919859  
2.4 -1 .060631 -1 .102413  -0 .940488  -0 .937905  
2.6 - 1.051877 - 1.085781 - 0.953502 - 0.952135 
2.8 - l . 0 4 3 3 4 8  -1 .070670  -0 .963983  -0 .963299  
3.0 -1 .035537  -1 .057312  -0 .972322  -0 .972010  
3.2 -1 .028682  -1 .045783  -0 .978888  -0 .978772  
3.4 -1 .022850  -1 .036058  -0 .984010  -0 .983991  
3.6 -1 .018008  -1 .028027  -0 .987973  -0 .987998  
3.8 --1.014062 --1.021530 -0 .991016  --0.991056 
4.0 --1.010898 -1 .016369  --0.993335 --0.993378 
4.2 - 1.008391 - 1.012337 -- ~995092 - ~995130 
4.4 --1.006427 -1 .009230  --0.996412 -0 .996446  
4.6 --1,004901 --1.006870 -0 .997399  --0.997425 
4.8 --1.003724 -1 .005092  --0.998131 --0.998150 
5.0 -1 .002823  -1 .003763  -0 .998671 -0 .998685  
5.2 -1 ,002135  --1.002774 -0 .999065  --0.999076 
5.4 --I ,001613 --1.002042 -0 .999352  --0.999360 
5.6 -1 .001219  -1 .001503  --0.999558 -0 .999564  
5.8 -1 .000921 --1.001107 -0 .999706  -0 .000709  
6.0 --1.000696 --1.000834 --0,999810 --0.999813 
6.2 -1 .000527  -1 ,000619  --0.999883 -0 .999885  
6.4 -- 1.000401 - 1.000462 -- 0.999934 - 0.999934 
6.6 - 1.000305 - 1.000346 - 0.999967 - 0.999967 
6.8 --1.000234 -1 .000260  --0.099990 -0 .999990  
7.0 -1 .000181 --1.000197 -1 .000003  --1.000004 
7.2 -- 1.000139 -- 1.000151 - 1.000012 -- 1.000012 
7.4 -1 .000108  --1.000116 --1.000017 --1.000017 
7.6 -1 .000085  -1 .000090  --1.000020 -1 .000020  
7.8 --1.000067 --1.000070 -1 .000021 --1.000020 
8.0 -1 .000054  -1 .000055  --1.000020 -1 .000020  
8.5 -- 1.000032 - 1.000032 -- 1.000017 - 1.000017 
9.0 -- 1.000020 - 1.000020 - 1.000014 - 1.000013 
9.5 -1 .000013  -1 .000013 --1.000010 --1.000010 

10.0 --1.000009 -1 .000009  -1 .000008  -1 .000008  
11.0 -- 1.000005 -- 1.000005 - 1.000004 - 1.000004 
12.0 - 1.000003 -- 1.000003 - 1.000003 -- 1.000003 

"Calculated from Eq. (34) with Eqs. (37), (38), (42), and (43) 
bab initio calculation of Kolos and Wolniewicz (Ref. [26]) 
c Calculated from Eq. (35) with Eqs. (37), (38), (42), and (43) 

W h i l e  i n  t h i s  p a p e r  w e  p r e s e n t  o n l y  t h e  r e s u l t s  o f  t h e  p r o t o t y p e  v a n  d e r  W a a l s  

p o t e n t i a l  o f  t h e  H 2  s y s t e m s ,  t h e  t h e o r y  s h o u l d  b e  a p p l i c a b l e  t o  o t h e r  s y s t e m s  a s  

we l l .  T h e  l o n g - r a n g e  d i s p e r s i o n  c o e f f i c i e n t  a r e  n o w  a v a i l a b l e  f o r  a l a r g e  n u m b e r  o f  

s y s t e m s  [38 ,  3 9 ] .  T h e  a s y m p t o t i c  e x c h a n g e  e n e r g i e s  o f  m a n y  s y s t e m s  h a v e  a l s o  
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Fig. 1. The van der Waals potential 

V(R) of the I-I2(3~u) system; - -  

present; © "exact" ab initio 

calculation of Kolos and 

Wolniewicz (Ref. [26]) 

Table 2. The energy components of the van der Waals potential V(R) of the H2(a-Y'u) system 

V(a.u.) 
R(a.u.) S~ ~l(a.u.) b - ~2(a.u.) c Ex(a.u.) d Present ~ % error ~ 

1.0 0.73683 0 . 9 5 8 6 2 - 1  g 0 . 2 8 7 5 0 - 1  0.11070 0.28815 - 2 3 . 9  

2.0 0.34393 - 0 . 1 9 0 7 9 - - 1  0 . 1 3 4 3 4 - 1  0.84752--1 0.94712--1 -- 8.0 

3.0 0.12146 - 0 . 6 9 1 9 9 - - 2  0 .49117--2  0.31607--1 0.27678--1 - 1 . 1  

4.0 0.03582 - 0 . 1 6 0 7 4 - 2  0 .16870--2  0 .87811--2  0 . 6 6 6 4 6 - 2  0.6 

5.0 0.00933 - - 0 . 3 2 1 9 6 - 3  0 . 5 8 3 1 8 - 3  0 . 2 0 7 6 0 - 2  0 . 1 3 2 9 4 - 2  - 1 . 1  

6.0 0.00222 - - 0 . 5 9 6 5 0 - 4  0 .21120--3 0 . 4 4 3 2 0 - 3  0 .19012--3 1.5 

7.0 0.00049 - 0 . 1 0 5 1 8 - - 4  0 .82246--4  0 .88181--4  - -0 .35036- -5  - 7 . 2  

8.0 0.00010 - 0 . 1 7 9 1 2 - - 5  0 .34922--4  0 .16664--4  - 0 . 2 0 2 4 7 - - 4  0.5 
9.0 0.00002 - - 0 . 2 9 7 2 0 - 6  0 .16203--4  0 . 3 0 2 7 3 - 5  - 0 . 1 3 5 7 6 - 4  0.6 

10.0 0.00000 -- 0.48317 -- 7 0.81617 - 5 0.53317 - 6 -- 0.77065 - 5 0.6 

l l . 0  0.00000 - 0.77270 -- 8 0.44144 - 5 0.91571 - 7 - 0.43377 - 5 0.4 

12.0 0.00000 - 0 . 1 2 1 9 1 - - 8  0 .25345--5 0 .15404--7 - 0 . 2 5 2 1 8 - - 5  0.2 
13.0 0.00000 - 0 . 1 9 0 1 3 - 9  0 . 1 5 2 9 0 - 5  0 . 2 5 4 6 6 - 8  - 0 . 1 5 2 7 0 - 5  

14.0 0.00000 - 0 . 2 9 3 6 6 - 1 0  0 . 9 6 1 3 9 - 6  0 . 4 1 4 7 9 - 9  - 0 . 9 6 1 0 7 - 6  

Calculated from Eq. (43) 
b Calculated from Eq. (42) 

Calculated from Eq. (38) with b given by Eq. (41); summed from 2n = 6 to 2n = 14 
d Calculated from Eq. (37) 

Calculated from Eq. (44) 

f % error = (V(present) - V(exact))/V(exact) with V(exact) taken from Ref. [26] 
g 0.95862 - 1 means 0.95862 x 10 -1 
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been calculated [40], mostly by Russian authors [41]. Up to now, they are used 
almost exclusively in the charge exchange scattering calculations [42]. We are 
presently using these results for calculating van der Waals potentials of alkali and 
rare gas systems. For these systems, the calculations are more complicated since 
even the zeroth-order wavefunction has to be approximated. Nevertheless, prelimi- 
nary results are very encouraging. 
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